Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The 5drare Earth iridate is an intriguing material with exhibiting exotic electronic and magnetic phases due to spin‐orbit coupled states. Ternary iridium oxidesLn3IrO7contain an unusual Ir5+(5d4) system, which remain a subject of active research. Fabricating epitaxialLn3IrO7films is challenging due to substrate compatibility, but it offers a valuable platform to explore electronic and magnetic behaviors under reduced dimensionality and substrate interactions, revealing novel phenomena based on Ir5+(5d4). In this regard, this demonstrates that Pr3IrO7with its highly anisotropic orthorhombic structure can be epitaxially grown on a cubic (111)‐oriented yttrium‐stabilized ZrO2(YSZ) substrate. Pr3IrO7film exhibits six epitaxial domains, where the (220) and (202) planes aligning epitaxially to YSZ (111) with the threefold symmetry. This diverse domain configuration in Pr3IrO7film leads to unique magnetic properties, exhibiting spin‐glass‐like behavior. Pr3IrO7thin film offers a platform for exploring unconventional magnetic states, and their successful heteroepitaxy on YSZ substrates opens new avenues for discovering novel physical phenomena.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Abstract Charge ordering (CO), characterized by a periodic modulation of electron density and lattice distortion, has been a fundamental topic in condensed matter physics, serving as a potential platform for inducing novel functional properties. The charge-ordered phase is known to occur in a doped system with highd-electron occupancy, rather than low occupancy. Here, we report the realization of the charge-ordered phase in electron-doped (100) SrTiO3epitaxial thin films that have the lowestd-electron occupancy i.e.,d1-d0. Theoretical calculation predicts the presence of a metastable CO state in the bulk state of electron-doped SrTiO3. Atomic scale analysis reveals that (100) surface distortion favors electron-lattice coupling for the charge-ordered state, and triggering the stabilization of the CO phase from a correlated metal state. This stabilization extends up to six unit cells from the top surface to the interior. Our approach offers an insight into the means of stabilizing a new phase of matter, extending CO phase to the lowest electron occupancy and encompassing a wide range of 3dtransition metal oxides.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            KTaO3heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO3thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO3and KTaO3thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO3-based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal–based oxides that lie beyond the capabilities of conventional methods.more » « less
- 
            Crystallographic Spin Torque Conductivity Tensor of Epitaxial IrO 2 Thin Films for Oxide SpintronicsAbstract Unconventional spin‐orbit torques arising from electric‐field‐generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high‐density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO2are determined via measurements of conventional (in‐plane) anti‐damping torques for IrO2thin films in the high‐symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti‐damping torques for IrO2thin films in the lower‐symmetry (101), (110), and (111) orientations, finding good agreement. The results confirm that spin‐orbit torques from all these orientations are consistent with the bulk symmetries of IrO2, and show how simple measurements of conventional torques from high‐symmetry orientations of anisotropic thin films can provide an accurate prediction of the unconventional torques from lower‐symmetry orientations.more » « less
- 
            Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
